Space Cowboy Design SCX-230 LowPro

DSC04772

On my recent order of cut carbon from Armattan Productions I included a GoPro mount kit which suits the SCX-230. I’ve been flying this copter for some time now and am very happy with it. It’s a long way from ‘latest and greatest’ gear wise but it is built with quality components and the experience has been better for it. Now being able to watch some of my flights in HD and share them with others has been great fun. To that end this post is primarily to share link some of my recent videos (no edits, directly from a GoPro Session 4).

My primary flying site has a great mix of open spaces and trees:

The rig also came with me on a recent camping trip:

I think I got very lucky with this crash. The only damage was the two front arms, I didn’t even need to straighten a prop:

Micro Quad ESC Frame

In an effort to get content flowing here again posts will probably be higher in image content and short notes rather than long form articles.

As such this is my latest quadcopter build. A micro 1S quad based on the excellent work of http://fishpepper.de.

DSC04165

I have used the tinyFISH Flight Controller directly so nothing amazing on my part there (thought the FC itself is an amazing accomplishment). My point of difference, and the reason for this post is the ESC frame. I have created a new board layout which uses the schematic of the tinyPEPPER 4-in-1 ESC but laid out on a PCB that serves double duty as the frame for building the copter on to.

Pair

My initial motivation for this creation was to avoid the wait time of a custom carbon frame being cut. With the time spent on this layout and delays in production I could of just as quickly gone down the more traditional route but this was a fun project and I picked up some new skills. With the tiny size of this copter the frame fits within the common 100×100 size limit of cheap PCB fab houses. I used JLC PCB as a test this time around and for $20 I got 10 PCB’s with 2oz copper. Unfortunately the delivered spec. was not what I was after. The board is 1.6mm rather than 1mm (so much extra weight!) and the solder mask could only be green, the sticking point being the 2oz copper.

In any case it flies as is, there were no problems electrically with the PCB. Assembling the tiny components was challenging my first time around but became easy enough even though I’m only using a soldering iron, hot air rework station and wire solder.

As required by the terms of the CERN open hardware license v1.2 my source files (KiCad) are available under the CERN open hardware license v1.2. Feel free to use the design – but make sure to give proper credit and release all modifications under the same license!

github64
ESC_Frame by aTaylor60

DSC04166

I modelled a new mount for the FPV camera which better suits FDM printing (no support required) and puts the lens on the centre line. There is also a bit more space withing it as I was finding the fishPEPPER designed option just wasn’t fitting the camera I had. A small dab of hot glue in the bottom of the mount ensures the camera stays put. It is available on Thingiverse.

thing_icon_57CM275t mount by ataylor60

DSC04168

To simplify the routing for the PCB fabrication I mount the battery with a rubber band that loops around the standoffs for the flight control stack.

DSC04175

I already have parts and plans for another 2 builds. One will be with this same ESC Frame but using 10000kV motors and another will be using the recommended 8000kV motors on a carbon frame (either my own design or the PepperF1SH design). I’d also like to get another run of boards from a different fab house in 1mm thickness and build a 2S version but that is a little further down the track.

I’ve also got a number of other custom designed but larger scale copters that will eventually find there way onto these pages. So many projects, such little time!

215 Hopper FPV Airborne

Over the weekend just past I got my first solid session flying FPV under my belt. This of course means, as the title of this post also states, that my FPV build of my 215 Hopper design is complete.

215H-FPV-7

The build wasn’t quite as smooth as I had hoped for a few of reasons:

  1. The new routing for the motor wires, through the arms, came up short. An extra 10mm or so and I would have run them as they were. As it is though I ended up extending the wires. This also made soldering them to the ESC’s a simpler task so it was a good move in the end. Despite the extra complexity in the build I am very pleased with how this aspect of the design turned out.
  2. My initial design for the base plate of the camera mount fouled on the zip ties that hold the ESC’s in place. I had to shorten that and print the new design.
  3. My initial design for the video transmitter carrier fouled on the heads of the screws  that mount the flight controller. This was actually 2 errors rolled into one. I absentmindedly assembled the frame back to front with respect to the flight controller. i.e. the flight controller is in the front half rather than the rear half. This doesnt make any difference flight wise but it would have meant the carrier wouldn’t have fitted up even if I had accounted for the flight controller screws.

The second failure with the video transmitter carrier design is also the same failure as with the camera mount. It is a lesson that I have learnt the hard way on to many occasions and it is thus; If you are using CAD use it fully, every detail should be represented in your model. If you leave something out, either intentionally or inadvertently it will come back to bite you at a later stage of the project. In the case of the camera mount I didn’t even have the holes for the zip ties let alone the zip ties themselves. For the transmitter carrier I didn’t have the screws in my model. Thankfully having the 3D printer on hand meant that I could correct these errors in the space of an evening and was ready to fly on saturday morning.

215H-FPV-8

With the new build came new batteries, I am now flying on 4S 1400mAh batteries (hobbyking) and loving it. I went with the higher discharge rate option, it is perhaps overkill but it means I get much further through the capacity of the battery before voltage sag starts hitting my warning levels.

215H-FPV-10

Other than the mentioned hiccups the build was much the same as the ‘base model’ 215 Hopper as I detailed here. I will put together a similar writeup for the FPV model in the near future. The design files will also be available. On top of that I now have a big stack of PCB’s for the build which I will make available for purchase. A full frame kit with hardware and 3D printed parts may also be an option.